Stepwise Reduction of Iron(II) Co-ordinated CO by NaBH₄. Access to New Hydroxymethyl and Hydride Complexes

Claude Lapinte and Didier Astruc

Laboratoire de Chimie des Organométalliques, ERA CNRS n° 477, Université de Rennes I, 35042 Rennes Cedex, France

NaBH₄ reduction of [FpCO] $^+PF_6^-$ (1) [Fp = (C₅Me₅)Fe(CO)₂] gives FpH (4), FpCH₂OH (2), and FpMe (3), selectively, depending on the solvent.

The catalytic reduction of CO, a process of intense interest owing to the prospect of petroleum shortages,¹ has been successfully modelled by Graham,² Casey,³ and Gladysz⁴ using rhenium complexes. We report here a stepwise reduction of CO co-ordinated to iron, the metal operating as a catalyst in the Fischer-Tropsch process. Wilkinson and Green's pioneering study⁵ showed that NaBH₄ reduction of [FpL]⁺ [Fp = (C₃H₅)Fe(CO)₂, L = CO or PPh₃] gives Fp₂ (L = CO) or (η^4 -C₅H₆)Fe(CO)₃ (L = PPh₃), whereas Cutler⁶ recently reported the NaBH₃CN reduction of [FpCO]⁺ in MeOH to give FpCH₂OMe. We have now used [(C₅Me₅)Fe(CO)₃]⁺PF₆⁻ (1)⁷ as a model substrate to avoid reduction of the cyclopentadienyl moiety and to stabilise intermediates of CO reduction.

The degree of reduction of CO in (1) depends on the solvent (Scheme 1). In tetrahydrofuran (THF), the reduction proceeds to the methyl complex (3) at 20 °C in 12 h [80% spectroscopic yield, ¹H n.m.r.; 20% of the hydride (4) was also detected]. Monitoring this reaction by ¹H n.m.r. also allowed the detection of the hydroxymethyl complex (2) (20% after 2 h) and its slow but complete transformation to (3). The percentage of the hydride (4) formed in this reaction (20% by ¹H n.m.r.) is the same after 2 or 12 h. Since neither (2) nor (3) gave (4), this argues for a possible formyl complex or its BH_3 adduct as intermediate. The only complex detected by ¹H n.m.r. after reduction of (1) in CH₂Cl₂ (4 h, 20 °C) was the new hydroxymethyl species (2). Crystallization from pentane gave an 80%yield of orange microcrystals stable for several days at 0 °C.† The reduction of (1) in H₂O (0 °C, 1.5 h) followed by extraction with cold pentane gave a high yield (apparently quantitative from ¹H n.m.r.) of the new hydride (4). The complex (4) can be isolated in 85% yield of cream microcrystals from this

^{† (2): &}lt;sup>1</sup>H n.m.r. (CD₃COCD₃) δ (p.p.m. from Me₄Si): 1.78 (s, 15H, CH₃), 1.15 (d, 2H, CH₂), and 4.72 (d, 1H, OH); J_{CH_2OH} 3 Hz; ¹³C n.m.r. (CD₂Cl₂) δ (p.p.m. from Me₄Si): 97.2 (C₆Me₅), 11.1 (CH₃), 220.7 (CO), and 67.2 (CH₂OH; triplet in the off-resonance spectrum).

reaction.[‡] Reduction of (1) in THF-water gave the same results. When one or two ancillary carbonyl groups are replaced by PPh₃ or Ph₂PCH₂CH₂PPh₂, the reduction of the cationic iron(π) complexes gives neither the hoped-for neutral formyl complex nor any other CO reduction products.

In conclusion, the dramatic solvent dependence of the reduction of iron(II) co-ordinated CO results from the interaction of the solvent with the borane adducts of the intermediates of CO reduction, as already noted by Graham in the related rhenium chemistry.² We also observed an easy synthesis of a rare hydroxymethyl metal complex and the extreme instability of the probable formyl intermediate. We are at present investigating the reactivities of the hydroxymethyl and hydride complexes (2) and (4).

We thank S. Sinbandhit from the 'Centre de Mesures Physiques de l'Ouest' for n.m.r. facilities and B.A.S.F. (Ludwigshafen, West Germany) for a generous gift of iron carbonyl.

Received, 13th January 1983; Com. 065

(4): ¹H n.m.r. (C_6D_6) δ (p.p.m. from Me₄Si): -11.74 (s, 1H, FeH) and 1.65 (s, 15H, CH₃); ¹³C n.m.r. (C_6D_6) δ (p.p.m. from Me₄Si): 94.7 (C_5Me_5), 8.7 (Me), and 219 (CO). Satisfactory elemental analyses were obtained.

References

- C. Masters, Adv. Organomet. Chem., 1979, 17, 61; E. L. Muetterties and J. Stein, Chem. Rev., 1979, 79, 479; V. Ponec, Catal. Rev.-Sci. Eng., 1978, 18, 151; G. Henrici-Olivé, and S. Olivé, J. Mol. Catal., 1977, 3, 443; Angew. Chem., Int. Ed. Engl., 1976, 15, 136; J. A. Labinger, in 'Transition Metal Hydrides,' ed. R. Bau, American Chemical Society, Washington D.C., U.S.A., 1978; R. L. Pruett, Science, 1981, 211, 11; H. Kung, Catal. Rev.-Sci. Eng., 1980, 22, 235; H. H. Storch, N. Golumbic, and R. B. Anderson, 'The Fischer-Tropsch and Related Syntheses,' Wiley, New York, U.S.A., 1951; P. T. Wolczanski and J. E. Bercaw, Acc. Chem. Res., 1980, 13, 121.
- 2 J. R. Sweet and W. A. G. Graham, J. Am. Chem. Soc., 1982, 104, 2811 and references therein.
- 3 C. P. Casey, M. A. Andrews, and D. R. McAlister, J. Am. Chem. Soc., 1980, 102, 1927 and references therein.
- 4 G. D. Vaughn and J. A. Gladysz, J. Am. Chem. Soc., 1981, 103, 5608; W. Tam, G.-Y. Lin, W.-K. Wong, W. A. Kiel, V.-K. Wong, and J. A. Gladysz, *ibid.*, 1982, 104, 141.
- 5 A. Davison, M. L. H. Green, and G. Wilkinson, J. Chem. Soc., 1961, 3172.
- 6 T. Bodnar, E. Cornan, K. Menard, and A. Cutler, *Inorg. Chem.*, 1982, 21, 1275.
- 7 D. Catheline and D. Astruc, J. Organomet. Chem., 1982, 226, C52.